

Rolling Element Bearing Stiffness Matrix Determination

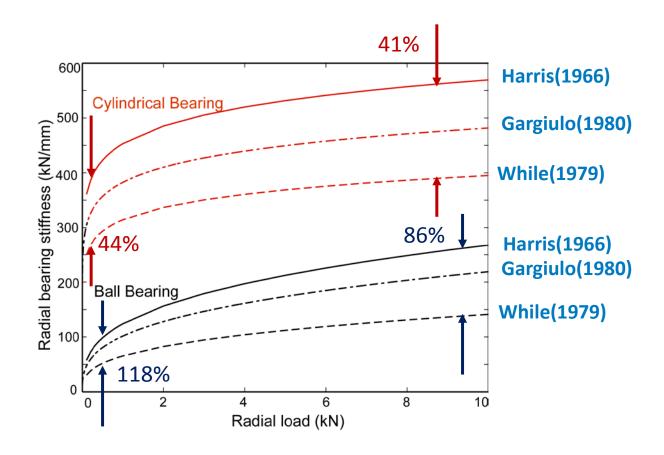
Gearbox Reliability Collaborative Meeting 2012

Yi Guo

Feb 09, 2012

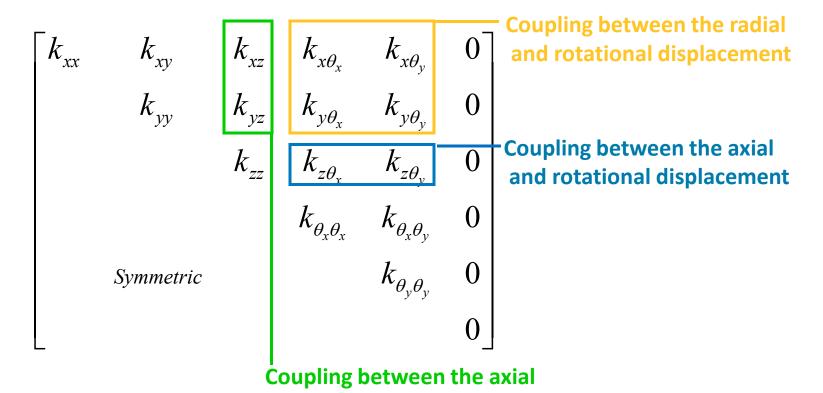
Motivation

- Current theoretical models differ in stiffness estimates
- Uncertainty in stiffness estimate from manufactures



Motivation

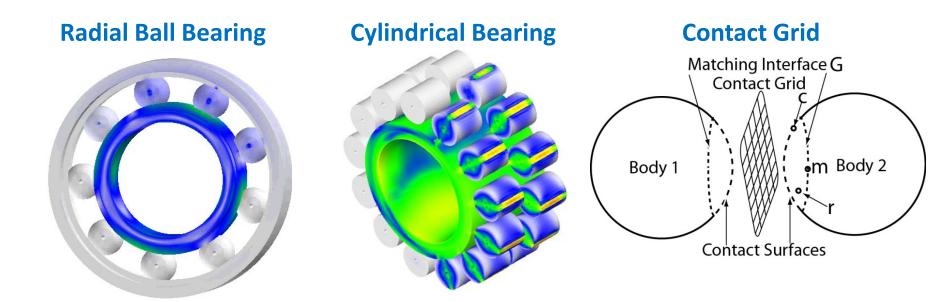
- Limited work on stiffness matrix in the literature
 - Diagonal matrix approximation typically used
- Elastic deformation of race causes off-diagonal terms



and radial displacement

Finite Element/Contact Mechanics Model

- 3D finite element model includes micro-geometry
- Analyze contact between rolling elements and races
 - Contact searched at every time instant as bearing rotates



Bearing Stiffness Computation Method

- Bearing contact can be modeled by stiffness matrix
 - Stiffness matrix changes with applied loads/moments

Summess matrix changes with applied loads/moments
$$X = [x, y, z, \theta_x, \theta_y, \theta_z]$$

$$F = [f_x, f_y, f_z, M_x, M_y, M_z]$$

$$K = \begin{bmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial \theta_z} \\ \vdots & \vdots \\ \frac{\partial M_z}{\partial x} & \frac{\partial M_z}{\partial \theta_z} \end{bmatrix}$$
Numerical Jacobian used to compute K
$$\begin{bmatrix} E(Y + S) & E(Y) \end{bmatrix}$$

• Numerical Jacobian used to compute K
$$K = \frac{\partial F}{\partial X} \approx \begin{cases} \frac{[F(X+\delta)-F(X)]}{\delta} \\ \frac{[F(X+\delta)-F(X-\delta)]}{2\delta} \\ \frac{[8F(X+\frac{\delta}{2})-8F(X-\frac{\delta}{2})-F(X+\delta)+F(X-\delta)]}{6\delta} \\ \vdots \end{cases}$$

Accuracy Order of Finite Element Analysis

- Order of Jacobian approximation formula should be comparable to the accuracy order of FEA
- Method to obtain the accuracy order of FEA

$$\begin{aligned} V_h &= V + c_1 h^{p_1} + c_2 h^{p_2} + \dots \\ e_h &\\ \frac{e_{h_3} - e_{h_2}}{e_{h_2} - e_{h_1}} &= \frac{V_{h_3} - V_{h_2}}{V_{h_2} - V_{h_1}} \approx \frac{h_2^{p_1} - h_3^{p_1}}{h_1^{p_1} - h_2^{p_1}} \end{aligned}$$

 V_h : finite element solution

V: exact solution

h: finite element size

 p_1 : order of accuracy

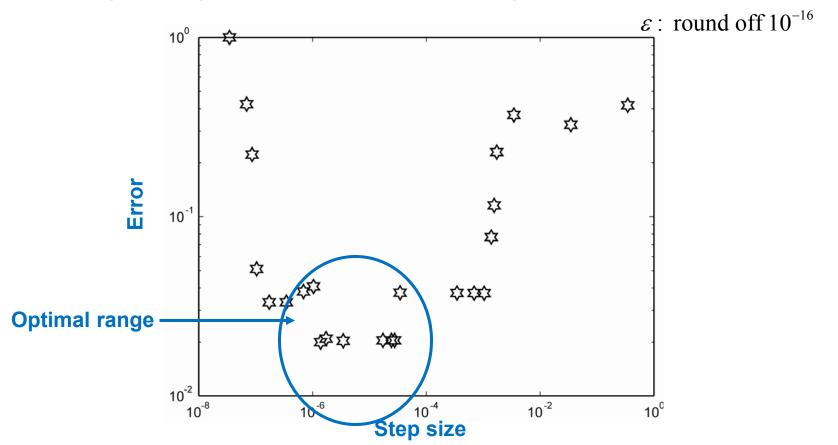
$$log\{(\frac{V_{h_3} - V_{h_1}}{V_{h_3} - V_{h_2}}) \frac{log \frac{h_2}{h_3}}{log \frac{h1}{h3}}\}$$

$$p_1 = \frac{log(\frac{h_1}{h_2})}{log(\frac{h_1}{h_2})}$$

Accuracy Order	FEA	FEA/Contact
p1	1.11	1.94

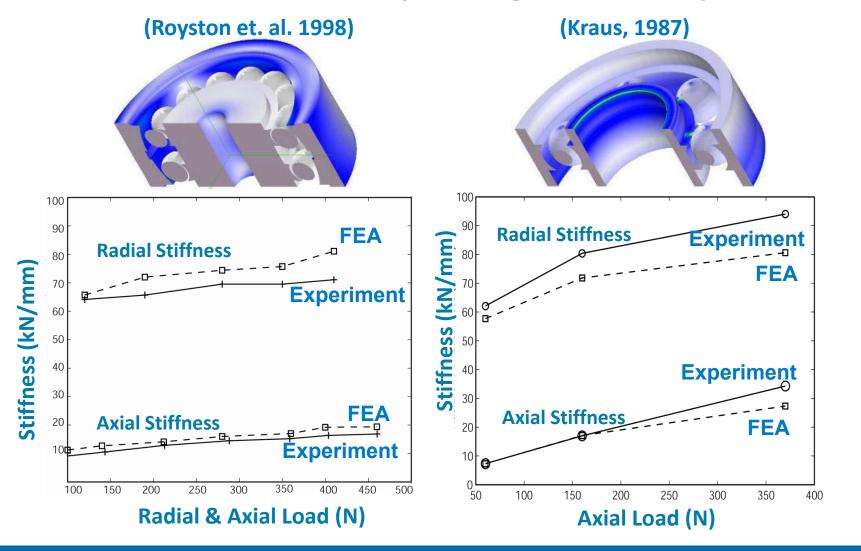
Step Size Selection

- Step size selection is essential for stiffness accuracy
 - Round off error comes into play with extremely small step size
- Analytical prediction of the step size $\delta = \varepsilon^{\frac{1}{3}} \approx 5 \times 10^{-6}$



Comparison Against Published Experiments

Calculated stiffnesses by FEA agree with experiments



Comparison Against Advanced Programs

- Discrepancy is apparent among FEA & advanced models
- Differences exist among state-of- the-art tools

Cylindrical Roller Bearing (FAG N205E)

	FEA	Program A %	Program B%	Program C %
Radial, x (N/mm)	113,149	-16.3%	-66.9%	+10.15%
Radial, y (N/mm)	200,320	+66.0%	-12.9%	+74.63%
Axial (N/mm)	0	0	0	0
Tilting, x (Nmm/rad)	1,843,453	+20.0%	+0.20%	+2.86%
Tilting, y (Nmm/rad)	1,550,232	-59.2%	-73.0%	-57.1%

Radial Ball Bearing (SKF Explorer 6205)

	FEA	Program A %	Program B%	Program C %
Radial, x (N/mm)	49,582	-14.5%	+1.40%	-22.73%
Radial, y (N/mm)	95,013	+0.40%	+18.5%	+4.30%
Axial (N/mm)	3,955	-17.1%	-19.6%	-17.8%
Tilting, x (Nmm/rad)	940,694	-4.40%	-1.10%	-3.37%
Tilting, y (Nmm/rad)	506,869	-33.7%	-51.0%	-36.2%

Traditional 2D Bearing Theoretical Model

- Roller/ball force-deflection relationship
 - Nonlinear stiffness/Hertzian contact

 $Q_i = k_e \delta_i^n, k_e$: stiffness of each roller/ball, where n depends on bearing type

Sum up all roller reacting forces within contact zone

$$F = \sum_{w_i=0}^{\psi_i=\pm\psi_n} Q_i \cos \psi_i$$

• Deflection at specified load F is calculated by

$$F=C\overline{k_e}\delta^n,\overline{k_e}$$
: equivalent stiffness between each roller and races

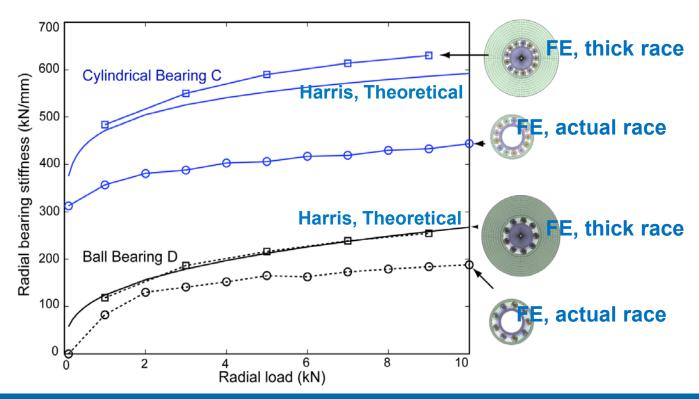
Major limitations of analytical models

- Diverse k_e approximations give large discrepancy of stiffness
- Assumptions only apply for unrealistic race and roller dimensions
 - Significantly affects the whole bearing stiffness

Load

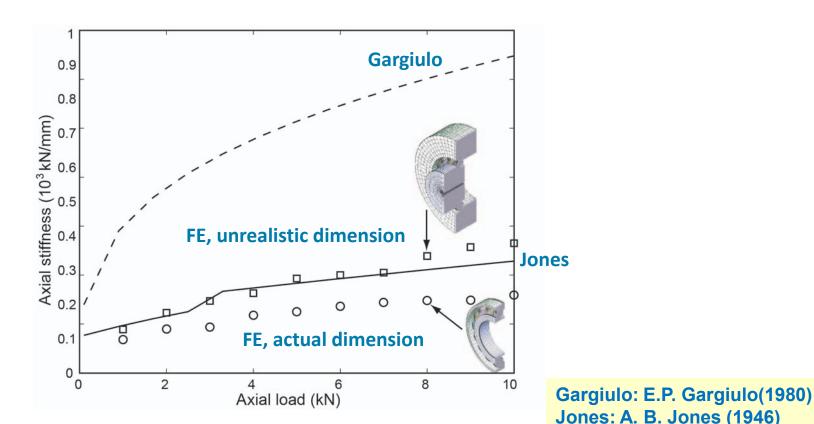
Comparison Against Theoretical Models

- FEA stiffness agrees with theoretical model
 - Only with unrealistic races that match Harris's assumptions
- Theoretical models predict higher stiffness with design dimensions



Comparison Against Jones's Model

- Agrees with Jones's model
 - Race thickness and length enlarged significantly
- Gargiulo's estimate deviates from the other two

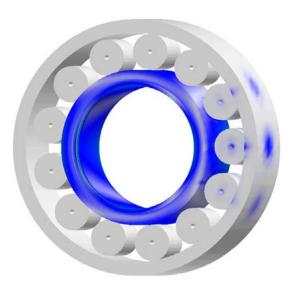


NATIONAL RENEWABLE ENERGY LABORATORY

Effect of Applied Load/Torque on Bearings

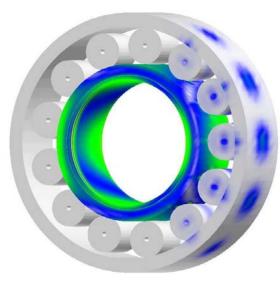
Number of rollers in contact changes with torque/load

3 Cylinders in Contact



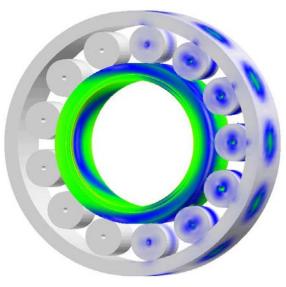
Radial Load 100N

5 Cylinders in Contact



Radial Load 1000N

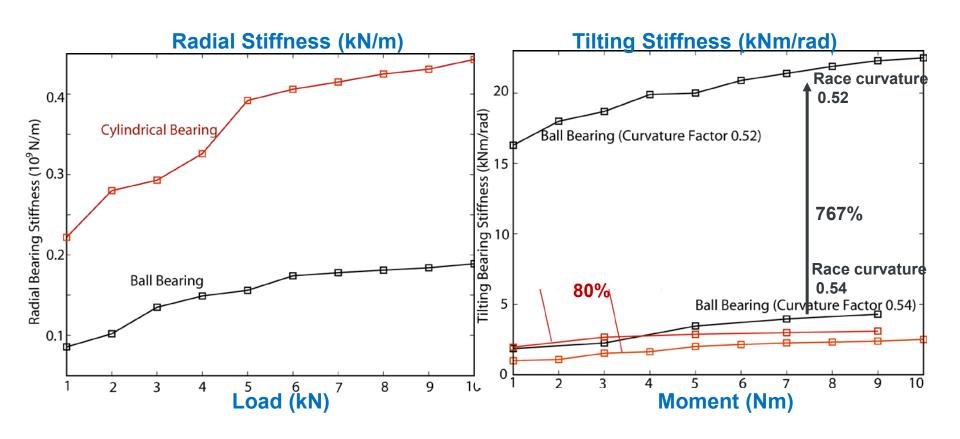
7 Cylinders in Contact



Radial Load 10000N

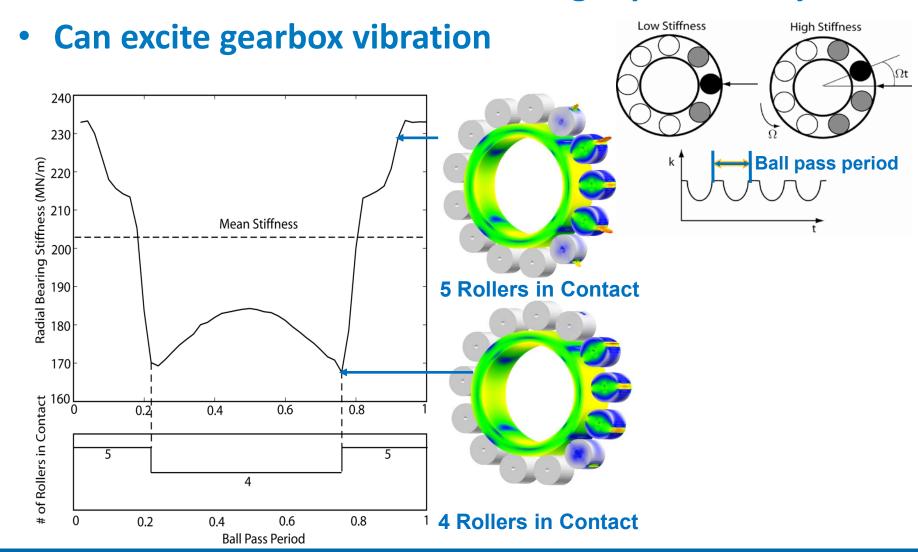
Bearing Contact Property

- Stiffness increases nonlinearly with load/torque
- Micro-geometry of bearings highly affect stiffnesses

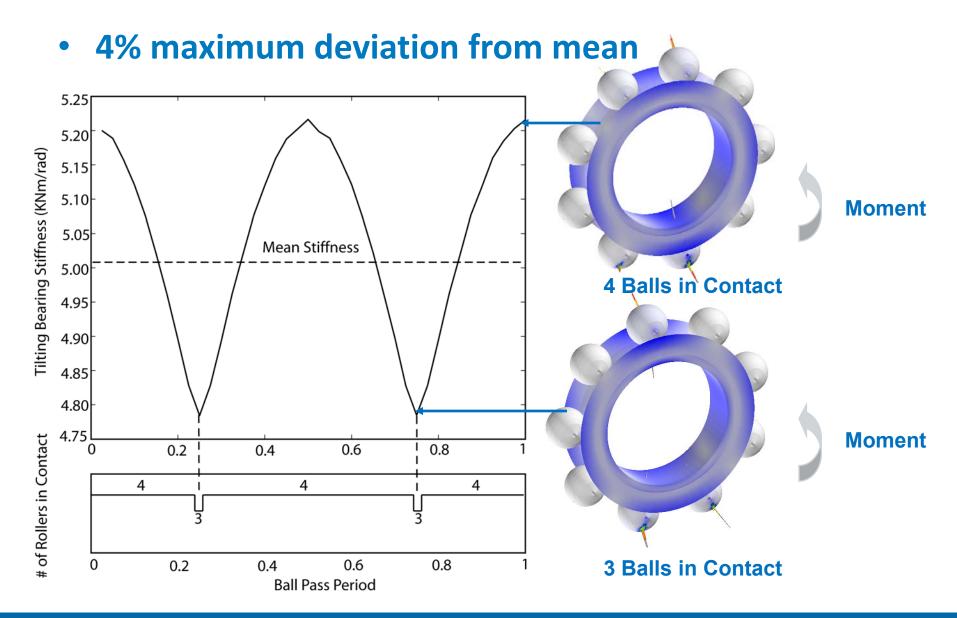


Bearing Stiffness Is Time-Varying: Radial

Number of rollers in contact changes periodically

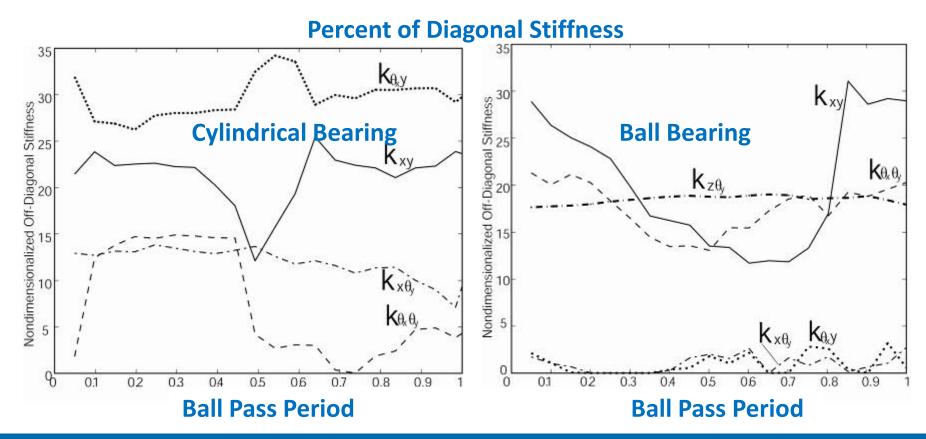


Bearing Stiffness Is Time-Varying: Tilting



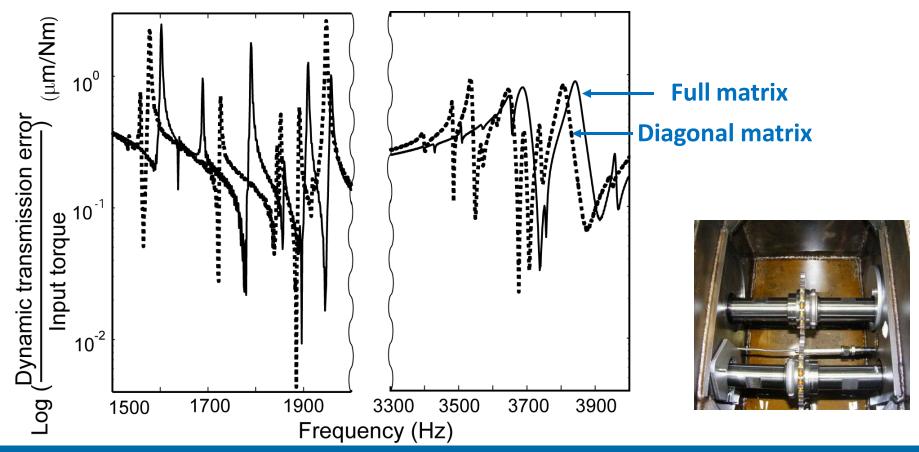
Off-Diagonal Stiffness

- Stiffness matrix off-diagonal terms are significant
- Stiffness fluctuates as bearing rotates
- At no instant stiffness matrix is purely diagonal



Off-Diagonal Stiffnesses Affect Gear Vibration

- Gear dynamics with off-diagonal stiffnesses differs from that with diagonal stiffness matrix
 - Need to include off-diagonal stiffnesses



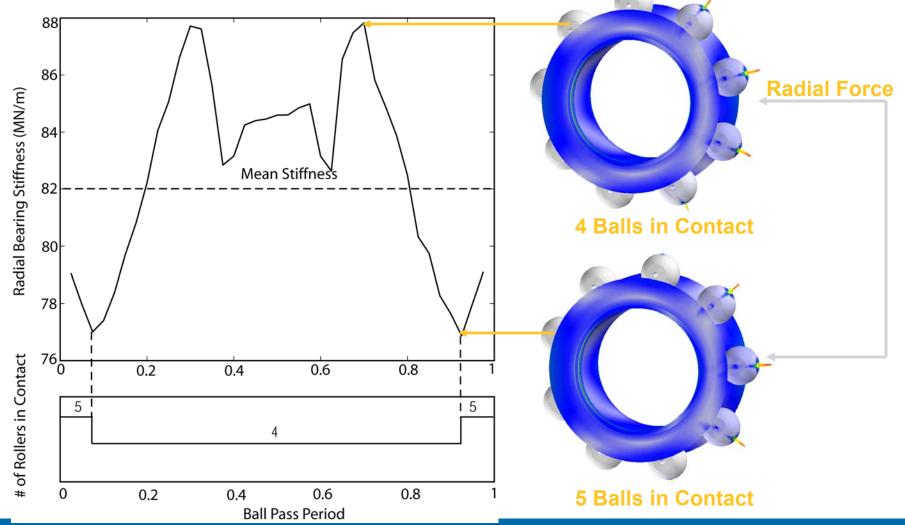
Conclusions

- A method developed to determine fully-populated 6×6 stiffness matrices
- Method validated by experiments
- Comparison against theoretical models expose their limitations
- Bearing contact is nonlinear and time-varying
- Bearing stiffness is sensitive to the microgeometry
- Off-diagonal stiffnesses affect gear dynamics

Radial Stiffness of Ball Bearing

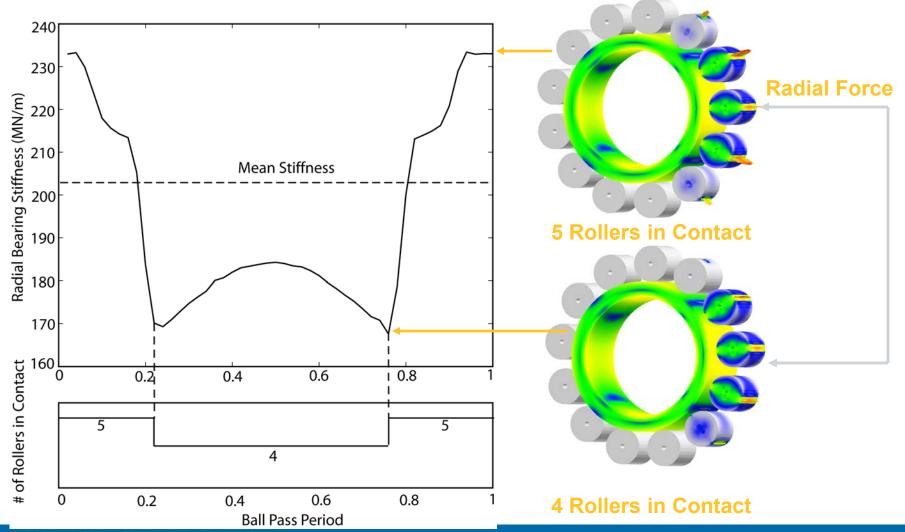
Number of rollers in contact changes with time

7% maximum deviation from mean stiffness



Time-Varying Bearing Stiffness

- Number of rollers in contact changes with time
- 16% maximum deviation from mean stiffness



Tilting Stiffness of Cylindrical Bearing

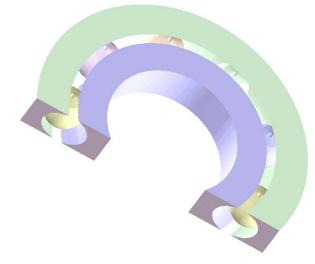
6% maximum deviation from mean stiffness 0.93 0.92 **Moment** Mean Stiffness **7 Rollers in Contact** 0.84 **Moment** # of Rollers in Contact 0.2 0.8 0.6 6 0.2 0.6 0.8 0.4 **6 Rollers in Contact Ball Pass Period**

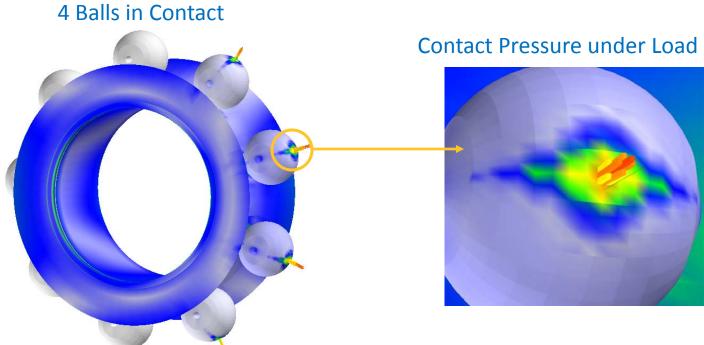
Examples

$$k_{xy} \approx \frac{\left[f_x(X + \delta y) - f_x(X - \delta y)\right]}{2\delta}$$

$$k_{\theta_x z} \approx \frac{\left[m_x(X + \delta z) - m_x(X - \delta z)\right]}{2\delta}$$

- Load unevenly distributed on balls
- Nominal point contact becomes elliptical contact from elastic deformation
- User defines contact grid to accurately capture elliptical contact

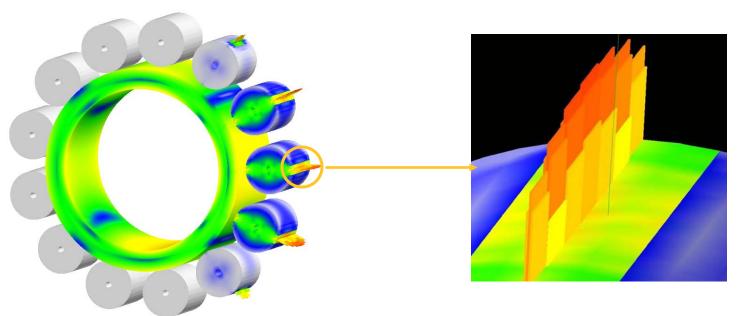




- Load unevenly distributed on rollers
- Nominal line contact becomes square contact from elastic deformation
- User defines contact grid to accurately capture square contact

5 Cylinders in Contact

Contact Pressure under Load



- Bearing stiffness increases sharply with the number of rollers
- More stiffness variation with odd number of rollers
- Large stiffness fluctuation amplitude with small number of rollers

